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Abstract

This study develops a novel technique of computer-aided parametric analysis (CAPA) to formulate simple corre-

lations for thermal ¯ow characteristics in a complex convective ¯ow system. To demonstrate the validity of the tech-

nique, fully developed mixed convection in uniformly heated horizontal ducts of square and circular cross-sections are

employed as illustrative examples. The e�ects of secondary ¯ow generated by the thermal buoyancy force are included.

The CAPA technique employs characteristic quantities, constant factors and multi-term relationships to convert the

governing equations into a set of algebraic equations. Relatively, this technique generates more extensive results than

the conventional order-of-magnitude and scaling analyses. With the aid of limited data from numerical results (or

measurements), formulas for evaluating the cross-sectional averages of axial velocity and temperature, the strength of

secondary vortices, friction factors and the heat transfer rates at various Pr and ReRa can be derived. Comparisons of

the present results and the direct numerical solutions manifest quite satisfactory performance of the CAPA technique.

Merits of the CAPA technique are: (1) less e�ort required in the developing procedure, (2) clear parameter-dependence

of the thermal ¯ow characteristics, and (3) convenience in using the resultant correlations of algebraic form. Ó 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the 17th century, Newton originated the concept

of dynamical similarity. Forty years later, Euler was the

®rst who discussed unit and dimensions in physical re-

lationships. In 1822, Fourier applied the geometrical

concept of dimension to physical quantities in heat ¯ow

problems. Near the end of the 19th century, Reynolds,

Rayleigh, and many other researchers [1] successfully

applied the idea of dimensional analysis. Vaschy in 1892,

Riabouchinsky in 1911 and Buckingham [2,3] reported

the establishment of the PI method. Buckingham out-

lined the general procedure of dimensional analysis.

Although the number of non-dimensional parameters

depends on the number of governing dimensional vari-

ables and their rank of dimensional matrix, there are

many combinations of the dimensionless parameters.

Consequently, little progress has been made after the

early stage of development.

In recent years, great progress has been made in

numerical simulation of physics and engineering, but the

direct numerical computation of full Navier±Stokes

equations and the energy equation is still not cost-

e�ective. In addition, even with a large amount of

numerical results, it is still not very easy to extract the

parametric dependence and the physical senses involved.

Therefore, simpli®cation of the equations through

physical consideration is indispensable. Schlichting [4]

successfully applied an order-of-magnitude analysis
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(OMA) to the boundary layer ¯ow over a ¯at plate.

Cheng et al. [5] used the same technique to analyze

mixed convection ¯ow in the thermal entrance region of

horizontal rectangular channels. One can derive dimen-

sionless parameters from the ratios of individual terms

in the governing equations and the associate boundary

conditions. However, the OMA technique derives no

simple algebraic relations among these parameters.

The technique of using a two-term relation from the

physical similitude is known as scaling or scale analysis

(SA). Bejan [6] applied this SA technique to various heat

transfer problems. Krane and Incropera [7] reported a

scaling analysis of the unidirectional solidi®cation of a

binary alloy. Due to the ¯ow complexity, the two-term

relationship from the physical similitude may not fully

describe the mechanism of transport phenomena. The

conventional scaling analysis deals with a simple ¯ow

system by comparing two terms in balance equations to

get the order-of-magnitude of certain physical quantity.

For a complex ¯ow problem, only some dimensionless

parameters can be resulted by this class of techniques.

Multiple-term relation would be more appropriate. In a

recent work by Soong and Chyuan [8], for example,

three and four terms of tangential and radial momentum

equations, respectively, were used to develop concise

and rational correlation for buoyancy e�ects in rotation-

induced mixed convection ¯ow.

The purpose of this study is to develop a technique of

parametric analysis of mixed convection. By formulating

and solving a set of simple algebraic equations and in-

voking the aid of less numerical solutions or experimental

data, a functional relationship between thermal-¯ow

characteristics and the governing parameters can be

formulated. In the cases considered in the present work,

only two point data obtained by numerical computations

(or experimental data) are needed to determine the con-

stant factors in the correlation. To keep the complete

physical e�ects, in the present computer-aided parametric

analysis (CAPA) technique, all terms in the momentum

and energy balance equations are retained. Simple ex-

pressions of the secondary ¯ow e�ects are also introduced

into the correlation. Finally, a set of correlations for ¯ow

and heat transfer characteristics of mixed convection

with the presence of secondary ¯ow can be completed.

2. Basic equations

The thermal ¯uid ¯ow considered in the present

study is steady and laminar in a hydrodynamically and

Nomenclature

A cross-sectional area (m2)

Ai;A0i;A
00
i constant factors, i � 1; 2; . . . ; 6

C parameter � ÿC1D3
e=4lv � Re=w

C1 axial pressure gradient � dPo=dZ
�N=m

3�
C2 axial temperature gradient � oT=oZ

(K/m)

De equivalent hydraulic diameter � 4A=S
(m)

f friction factor � 2sw=qW
2

g gravitational acceleration (m=s2)

h average heat transfer coe�cient

(W=�m2 K�)
Kf thermal conductivity of ¯uid (W/(m K))

Nu Nusselt number � hDe=Kf

Po axial pressure distribution which is a

function of Z only (N=m2)

Pr Prandtl number � m=a
q constant wall heat ¯ux (W=m2 s)

Ra Rayleigh number � gbC2D4
e=ma

Re Reynolds number � W De=m
S circumference of cross-section (m)

T local temperature (K)

Tw wall temperature (K)

U ; V ;W velocity components in X, Y and Z di-

rections or in R, / and Z directions (m/s)

u; v;w dimensionless velocity components in x,

y and z directions or in r, / and z

directions

X ; Y ; Z Cartesian coordinates (m)

x; y; z dimensionless Cartesian coordinates

Greek symbols

a thermal di�usivity �m2=s)

b coe�cient of thermal expansion (1/K)

h dimensionless temperature difference �
�T ÿ Tw�=�C2DePrC�

l viscosity �N s=m2�
m kinematic viscosity (m2=s)

N; n dimensional and dimensionless vorticity

(unit of N is 1/s)

q density �kg=m3�
sw wall shear stress �N=m2�
W;w dimensional and dimensionless stream

function (unit of W is m2=s)

Superscript

� � cross-sectionally averaged quantity

Subscripts

b bulk quantity

c characteristic quantity

o condition for pure forced convection

q constant wall heat ¯ux

w wall condition
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thermally fully developed region of a horizontal square

duct or a horizontal circular pipe. The axial pressure and

temperature gradients are constant and the peripheral

wall temperature is uniform. Fig. 1(a) displays the

physical model and the coordinate system. In the present

analysis, Cartesian coordinates system is applied to both

cases of square channel and circular pipe. The viscous

dissipation and compressibility e�ects in the energy

equation are neglected. The Boussinesq approximation

is assumed to be valid. After a cross-di�erentiation in

cross-sectional plane, the governing equations for a

thermal ¯ow fully developed in Z direction [9] are

written as

U�oN=oX � � V �oN=oY � � mr2N� bg�oT=oX �; �1�

U�oW =oX � � V �oW =oY � � ÿ1=q�oPo=oZ� � mr2W ;

�2�
U�oT=oX � � V �oT=oY � � W �oT=oZ� � ar2T ; �3�
where

N � ÿr2W � oV =oX ÿ oU=oY ; �4a�
U � oW=oY ; V � ÿoW=oX : �4b�
By employing the following dimensionless variables and

parameters,

x � X=De; y � Y =De; u � UDe=m;

v � VDe=m; w � WDe=�mC�;
h � �T ÿ Tw�=C2DePrC; C1 � oPo=oZ;

C2 � oT=oZ; C � ÿ�C1D3
e�=4ml;

Ra � gbC2D4
e=ma; Pr � m=a;

�5�

Eqs. (1)±(3) can be cast into the dimensionless form,

u�on=ox� � v�on=oy� � r2n� RaC�oh=ox�; �6�

u�ow=ox� � v�ow=oy� � r2w� 4; �7�

Pr�u�oh=ox� � v�oh=oy�� � r2hÿ w; �8�
and the vorticity and stream function relations, (4a) and

(4b), become

n � ÿr2w � ov=oxÿ ou=oy; �9a�
u � ow=oy; v � ÿow=ox; �9b�
where r2 � �o2=ox2 � o2=oy2�. The solution contains

two independent parameters RaC and Pr [9]. The value

of Pr ranges from 0 to 500 in the present study. Con-

sequently, the boundary conditions at channel walls can

be written as

ow=on � w � h � 0; �10�
where n is a unit normal to the channel wall. The

boundary value of stream function at the channel walls

is W � 0. The symmetry condition is not assumed and

the computation is performed over the whole cross-

section of the channel and it demonstrates that the ¯ow

and temperature ®elds remain symmetric in the ranges of

RaC and Pr considered. In the present work, the nu-

merical solution of vorticity±velocity formulation, Eqs.

(6)±(8), (9a) and (9b), plays a complementary role to

support the development of CAPA. The PDE system is

discretized by utilizing the power-law scheme [10]. The

boundary±vorticity method [11] is used to solve the

vorticity transport equation and the SIS algorithm [12] is

Fig. 1. Physical models and coordinate system.
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applied for solution of the resultant di�erence equations.

The iteration is terminated when the variables satisfy the

criterion as

e �
X

i; j

�F n�1
i; j

��� ÿ F n
i; j�=F n�1

i; j

���6 5� 10ÿ5;

where F represents W; n;w, and h. The subscripts i and j

show the ith and the jth grid in x and y directions, re-

spectively. The superscript n indicates the nth iteration.

The numerical errors are less than 0.12%, when using the

mesh points of 41� 41. The detailed procedure of nu-

merical solution has been given in the literature [9] and

will not be repeated here.

After computation, C converts to the Reynolds

number Re � W De=m by the relation C � Re=w. Fol-

lowing the conventional de®nitions, the expressions for

the friction parameter f � Re and the Nusselt number Nu

are

f � Re � �2sw=qW
2��W De=m� � 2=w; �11�

Nu � hDe=Kf � w=�4wh=w�; �12�
where w and wh are the cross-sectional averages evalu-

ated by using Simpson's rule.

3. CAPA technique

3.1. Comparison of CAPA and other methods

Before developing the CAPA for the mixed convec-

tion ¯ows in ducts, a comparison of CAPA and other

techniques is to be presented ®rst. In the CAPA analysis,

the parametric correlations are directly derived from the

governing equations and it is assumed that the pro®les

of velocity components and temperature distribution

remain unchanged in their shapes but changed in mag-

nitudes with governing parameters. Similar to the tech-

niques of SA and OMA, the characteristic quantities are

used for representing the corresponding ¯ow variables,

and the ratios of characteristic quantities for the deriv-

atives in the governing equation. As shown in Table 1,

the CAPA technique introduces a positive or negative

sign by considering the physical meaning of each term in

the governing equation. On the contrary, the SA and

OMA techniques do not consider any sign. The CAPA

technique also uses constant factors to make up the

di�erence in the magnitudes of the ratios of character-

istic quantities and the derivatives. Finally, the PI

method shows only an unknown function with non-

dimensional parameters, the SA technique yields only

dimensionless parameters, and the OMA technique

provides the dimensionless partial di�erential equations

with non-dimensional parameters. The present CAPA

technique will give a set of algebraic equations with

parameters. As seen in Table 1, the OMA and CAPA

techniques can fully describe the physics in the transport

phenomena of the problem. The present CAPA tech-

nique dramatically simpli®es the process in solving a set

of algebraic equations instead of solving PDE with the

OMA technique.

3.2. Development of parametric analysis by CAPA

technique

Consider the case of Pr � 0:73 and RaC �
105 �ReRa � 1:385� 104�, Fig. 2(a) shows the dimen-

sionless isotherms and constant axial velocity lines and

Fig. 2(b) shows the stream function and secondary ¯ow

velocity vector on cross-plane of a square duct. To il-

lustrate the CAPA technique, Fig. 2(c) shows the sche-

matic diagram for dimensional temperature and axial

velocity on the plane x � 0:5. Fig. 2(d) depicts the sec-

ondary ¯ow velocities on the planes x � 0:25, x � 0:75

and y � 0:5. The present CAPA technique assumes that

Table 1

Comparison of PI method, SA, OMA and CAPA techniques

Characterstics Analysis

PI method SAa OMA CAPA

Sign NA + PDE �
Factor NA Unit PDE Constant

T±T relationb NA One±one One±one Multiple terms

Equation for N-D.

parametersc

Unknown function NAd PDEe Algebraic

Physics in T.P.f No May be partially Fully Fully

a SA: Scale analysis based on the book written by Bejan [6].
b T±T: Term to term.
c N-D: Non-dimensional.
d NA: Not applicable.
e PDE: Partial di�erential equation.
f T.P.: Transport phenomena.
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the temperature, axial velocity, and secondary ¯ow

patterns in the ranges of parameters investigated do not

deviate much from the ones shown in this ®gure. The

cross-sectional averages of temperature and the axial

velocity, respectively, are considered as the characteristic

temperature and axial velocity, and the maximum value

of the stream function on the cross-plane is used to

characterize the total secondary ¯ow rate.

In working procedure of the CAPA technique, by

employing the properly de®ned characteristic quantities

for dependent and independent variables, the original

PDEs are then turned into that of algebraic form. Each

term involves a constant factor in order to make up the

approximations. In a resultant equation of n terms, ac-

tually, only �nÿ 1� terms need this kind of factors. For

example, with scales of the velocity components and

their derivatives

U � oW=oY � Wc=De; V � ÿoW=oX � ÿWc=De;

oW =oX � Wc=De;

Fig. 2. Field and cross-sectional average properties of mixed convection at Pr � 0:73 and RaC � 105 in a square duct: (a) temperature

and axial velocity; (b) stream function and vector distributions; (c) averages or characteristic quantities of temperature and axial

velocity; (d) cross-sectional ¯ow rate.
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oW =oY � Wc=De; oW =oX 2 � ÿWc=D2
e ;

o2W =oY 2 � ÿWc=D2
e ;

and the factors A04 and A004, the terms in the axial mo-

mentum Eq. (2) can be expressed as

U�oW =oX � � V �oW =oY � � A04�Wc=De��Wc=De�; �13a�
ÿ 1=q�oPo=oZ� � ÿC1=q; �13b�
mr2W � ÿA004mWc=D2

e : �13c�
Combining Eqs. (13a)±(13c) with A4 � A04=A004 and A03 �
1=A004, ®nally, one has an algebraic relation

A4

Wc

De

Wc

De

� ÿC1

q
A03 ÿ m

Wc

D2
e

�14a�

or

Wc � A03

�
ÿ C1

q

�
A4

Wc

D2
e

��
� m

D2
e

�
: �14b�

It is seen that the inertia term of the original equation is

replaced by A4�Wc=De��Wc=De�, in which the ratio Wc=De

stands for the mean secondary ¯ow velocity U, Wc in-

dicates the maximum value of stream function at vortex

center, Wc represents the mean axial velocity, and the

constant A4 makes up the di�erence between the

magnitudes of U�oW =oX � � V �oW =oY � and �Wc=De�
�Wc=De�. The ®rst term with a constant A03 on the RHS

of Eq. (14a) represents the pressure-gradient term. The

last one with a negative sign is for the viscous term.

Eqs. (14a) and (14b) tells that the pressure gradient

drives the ¯ow and is balanced by the inertia force and

the viscous force. This describes the physics of transport

phenomena.

Following the procedure mentioned above, the en-

ergy equation (3) is turned into

A6

Wc

De

Tc ÿ Tw

De

� A5WcC2 � ÿa
Tc ÿ Tw

D2
e

�15a�

or

Tc ÿ Tw � ÿA5WcC2 A6

Wc

D2
e

��
� a

D2
e

�
�15b�

where (Tc ÿ Tw) indicates the mean temperature di�er-

ence between the ¯uid and the wall. Thermal convection

in the axial direction, ÿA5C2Wc, is balanced by the

thermal convection, A6�Wc=De��Tc ÿ Tw�=De, and the

heat conduction, a�Tc ÿ Tw�=D2
e .

For the vorticity transport equation (1), one has

A1

Wc

De

1

De

Wc

D2
e

� ÿm
Wc

D4
e

ÿ A02bg
Tc ÿ Tw

De

�16a�

or

A1W
2 �Wÿ A02bg�Tc ÿ Tw�D

3
e

m2
� 0: �16b�

In Eq. (16a), Nc � Wc=D2
e is used to approximate

N � ÿr2W in Eq. (1). By substituting �Tc ÿ Tw� in

Eq. (15b) into (16b) and introducing dimensionless

stream function w � Wc=m and A2 � A02A5, one has

A1w
2 � w� A02A5

A6Prw� 1
ReRa � 0 �17a�

or

w3 � A1 � A6Pr
A1A6Pr

w2 � 1

A1A6Pr
wÿ A2

A1A6Pr
ReRa � 0:

�17b�
From [13], the solution of the above cubic equation is

w � M � N ÿ a1

3
�as Q > 0�;

� 2
��������
ÿQ

p
cos

/
3

� �
ÿ a1

3
�as Q < 0�;

�18�

where

a1 � A1 � A6Pr
A1A6Pr

; a2 � 1

A1A6Pr
; a3 � ÿ A2

A1A6Pr
ReRa;

Q � 3a2 ÿ a2
1

9
; R � 9a1a2 ÿ 27a3 ÿ 2a2

1

54
;

M �
������������������������������
R�

����������������
Q3 � R2

p
3

q
; N �

������������������������������
Rÿ

����������������
Q3 � R2

p
3

q
;

cos / � R���������ÿQ2
p :

By employing the dimensionless mean velocity

w � WcDe=mC and temperature h � �Tc ÿ Tw�=C2DePrC
and putting A3 � 4A03, Eqs. (14b) and (15b) change to the

dimensionless forms,

w � A3

1� A4w
; �19�

h � ÿA5w
1� A6Prw

: �20�

Instead of solving w shown in Eq. (18), one may also

solve it reversely by ®nding the value of ReRa in

Eq. (17a) and (17b) with an increment of w from the zero

value, i.e.,

ReRa � �A1w� �1� A1A6�w2 � A6Prw3�=A2: �21�

With this value of w, one may obtain the dimensionless

mean axial velocity w and mean temperature di�erence h
from Eqs. (19) and (20) for the corresponding ReRa.

Following the conventional de®nitions of f � Re in

Eq. (11), one can readily obtain the ratio of friction

factors as

f � Re=�f � Re�o � 1� A4w; �22�
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where �f � Re�o � A3 by considering w � 0 at ReRa � 0.

For the de®nition of Nu in Eq. (12), the mixed mean

temperature di�erence wh=w is the same as the mean

temperature di�erence, h in the CAPA technique. Con-

sequently, the Nusselt number relation is

Nu=�Nu�o � 1� A6Prw; �23�
where �Nu�o is the Nusselt number for w � 0. Eqs. (22)

and (23) give simple expressions of the e�ects of sec-

ondary ¯ow on the friction factor and Nusselt number,

respectively. The present expressions (22) and (23) are

disclosed in the literature for the ®rst time.

3.3. Limiting case of Pr! 0

For the case of Pr! 0, the thermal convection in the

¯ow direction is balanced by the conductive heat

transfer in the cross-sectional plane. The convection

term in the cross-sectional plane is not important. By

using the characteristic quantities, the energy equation

becomes

A5WcC2 � ÿa
Tc ÿ Tw

D2
e

�24a�

or

Tc ÿ Tw � ÿA5WcC2

a
D2

e

� ��
: �24b�

By substituting �Tc ÿ Tw� into the vorticity transport

equation (16b), one has

A1w
2 � wÿ A2ReRa � 0: �25�

This equation can be obtained readily by multiplying

Eq. (17b) by A1A6Pr and putting Pr � 0. The solution for

positive w is

w � ÿ 1

2A1

�
������������������������������
1

4A2
1

� A2

A1

ReRa

s
: �26�

The ratio of friction factors can be written as a function

of ReRa.

f � Re
�f � Re�o

� 1� A4w

� 1� A4

2A1

�������������������������������
1� 4A1A2ReRa

p�
ÿ 1
�
: �27�

Note that the Nusselt number ratio is Nu=�Nu�o � 1:0
for Pr � 0.

3.4. Limiting case of Pr!1

In the case of large Prandtl number, Pr!1, the

buoyancy force is balanced by the viscous force in the

vorticity transport equation (16a), i.e.,

0 � mÿ w
D4

e

ÿ A02bg
Tc ÿ Tw

De

: �28�

By substituting �Tc ÿ Tw� of Eq. (5) into (8), one has

w2 � 1

A6Pr
wÿ A2

A6Pr
ReRa � 0: �29�

Then one has a positive solution for w,

w � ÿ 1

2A6Pr
�

����������������������������������������
1

4A2
6Pr2
� A2

A6Pr
ReRa

s
: �30�

The value of stream function will be zero for ®nite ReRa

and Pr!1. The zero limiting value can be observed

also from Eq. (17b). The ratio of friction factors in

Eq. (22) yields

f � Re
�f � Re�o

� 1� A4w

� 1� A4

2A6Pr

�����������������������������������
1� 4A2A6PrReRa

p�
ÿ 1
�
� 1:0

�31�
for an in®nite Prandtl number. The ratio of Nusselt

number becomes

Nu
�Nu�o

� 1� A6Prw � 1

2
�

���������������������������������
1

4
� A2A6PrReRa

r
: �32�

The constant factors can be determined by using a few

data from numerical solutions of the governing PDEs

(or the measurements if available). For w � 0 at

ReRa � 0, the numerical data of pure forced convection

determine A3 and A5. For a given Pr and ReRa, the

mixed convection data determine A4 and A6. However,

in the present study, the values of ReRa are chosen by

considering the minimum percentage RMS error at 11

points over the range of ReRa. Tables 2 and 3 list the

factors Ai; i � 1; 2; . . . ; 6 for Pr � 0±500.

4. Results and discussion

In the present study, the CAPA technique yields

simple correlations for combined free and forced lami-

nar convection in ducts for Prandtl number ranging

from 0 to 500 and ReRa� 0 to around 1� 105. It covers

the liquid metal for small Pr, gases, water, and engine

oils for large Pr. The CAPA technique provides a

method to derive simple and accurate correlation for-

mulas of a complex thermal ¯uid ¯ow with the support

of only few data from numerical calculations or exper-

imental measurements.

To demonstrate the e�ectiveness of the CAPA tech-

nique, ¯ow pattern of one pair of counter-rotating

vortices in mixed convection duct ¯ows is selected. The

value of the stream function is zero on the square
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channel wall and along the centerline of symmetry, and

it is maximum in the sense of absolute value at the center

of counter-rotating vortices. The maximum value of the

stream function may be regarded as the secondary ¯ow

rate of one of the vortices. It is seen that the stream

function is a signi®cant variable in the present para-

metric analysis. The relationships of the stream function

and ReRa to the Prandtl number in the range Pr� 0±500

are plotted in Fig. 3. The results show that the stream

function of CAPA ®ts well with the numerical solutions.

The RMS of the percentage error is about 2.79% for

Pr � 0:73. The errors for the other Prandtl number are

also shown in Fig. 3.

To illustrate the accuracy of the technique on the

mean axial velocity, the numerical solution is used to

obtain A3 and A4 in Eq. (19). In Fig. 4, comparison of

the mean axial velocity with the numerical solution is

made for various Prandtl numbers. A maximum of

0.58% di�erence from the numerical solution for

Pr � 0:73 is observed. The di�erences for the other

Prandtl numbers are also shown in Fig. 4.

The temperatures with ReRa for Pr � 0±500 are

shown in Fig. 5. The results of the simple algebraic

equation of the CAPA technique agree well with nu-

merical predictions. With the CAPA technique, the

ratios of friction factor and Nusselt number can be ex-

pressed by Eqs. (22) and (23), respectively. Fig. 6 shows

the friction parameter f � Re=�f � Re�o for Pr � 0±500

with RMS di�erence in percentage. The maximum dif-

ference between the CAPA results and the numerical

predictions is 0.65% for Pr � 0:73. Fig. 7 shows the

comparisons of the evaluated buoyancy e�ects on heat

transfer performance. It is noted that, as Nu=�Nu�o is

Fig. 3. Comparison between w predicted by CAPA and nu-

merical solutions for mixed convection in a square duct.

Table 2

The corresponding factors for mixed convection in a horizontal square ducta

Factors Prandtl No. (Pr)

0 0.01 0.1 0.73 7.2 100 500

A1 1:632� 10ÿ2 1:846� 10ÿ2 2:165� 10ÿ2 1:128� 10ÿ1 1.759 40.977 ±

A2 5:560� 10ÿ5 5:560� 10ÿ5 5:563� 10ÿ5 5:561� 10ÿ5 5:570� 10ÿ5 5:577� 10ÿ5 5:573� 10ÿ5

A4 1:362� 10ÿ2 3:431� 10ÿ2 4:347� 10ÿ2 4:761� 10ÿ2 2:434� 10ÿ2 2:541� 10ÿ2 2:581� 10ÿ2

A6 ± 8:776� 10ÿ1 1:080� 10ÿ1 9:529� 10ÿ2 8:906� 10ÿ2 8:645� 10ÿ2 7:992� 10ÿ2

a A3 � 1:404� 10ÿ1 and A5 � 4:820� 10ÿ2 for all Prandtl numbers. These factors are evaluated at ReRa � 14:0 and 10,444.3 for

Pr � 0, ReRa � 14:0 and 33,094.6 for Pr � 0:01, ReRa � 14:0 and 61,807.5 for Pr � 0:1, ReRa � 14:0, and 91,591.5 for Pr � 0:73,

ReRa � 14:0, and 68,603.4 for Pr � 7:2, ReRa � 14:0, and 10,532.6 for Pr � 100, and ReRa � 1:4 and 140.2 for Pr � 500.

Table 3

The corresponding factors for mixed convection in a horizontal circular ducta

Factors Prandtl No. (Pr)

0 0.01 0.1 0.73 7.2 100 500

A1 6:909� 10ÿ2 6:951� 10ÿ2 7:482� 10ÿ2 1:685� 10ÿ1 2.172 3.408 ±

A2 7:743� 10ÿ4 7:736� 10ÿ4 7:736� 10ÿ4 7:782� 10ÿ4 7:791� 10ÿ4 7:750� 10ÿ4 7:750� 10ÿ4

A4 5:138� 10ÿ2 6:174� 10ÿ2 6:509� 10ÿ2 4:188� 10ÿ2 1:262� 10ÿ2 1:044� 10ÿ2 1:038� 10ÿ2

A6 ± 1.870 3:124� 10ÿ1 8:940� 10ÿ2 5:248� 10ÿ2 4:177� 10ÿ2 3:577� 10ÿ2

a A3 � 4:921� 10ÿ1 and A5 � 1:903� 10ÿ1 for all Prandtl numbers. These factors are evaluated at ReRa � 49:2 and 4054.5 for Pr � 0,

ReRa � 49:2 and 4153.9 for Pr � 0:01, ReRa � 49:2 and 4166.7 for Pr � 0:1, ReRa � 49:2, and 92,182.8 for Pr � 0:73, ReRa � 49:2, and

4804.3 for Pr � 7:2, ReRa � 49:2, and 349.7 for Pr � 100, and ReRa � 49:3 and 147.8 for Pr � 500.
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plotted vs PrReRa rather than ReRa, the curves at

di�erent Pr get close to each other and show weak

Pr-dependence. The RMS di�erences of Nu=�Nu�o
are slightly larger than those of f � Re=�f � Re�o. This is

due to an over-simpli®cation of the non-linear term

wh=w to h.

The corresponding results for circular ducts are

shown in Figs. 8 and 9, respectively. These two ®gures

demonstrate that the correlations (22) and (23) are also

available to the mixed convection in circular ducts. For

clarity, the value of ReRa is used in Fig. (9).

5. Conclusions

A technique of CAPA has been developed for de-

riving simple and quite accurate formulas with the aid of

only few numerical data for a complex convective ¯ow

system. The CAPA technique formulates a set of alge-

braic equations from the original conservative equations

with considerations of multi-term relationships, physical

meaning, sign and scale of each term, and proper

constant factors for approximation. It is much easier

to solve the resultant algebraic equations of the

Fig. 4. Comparison between w predicted by CAPA and nu-

merical solutions for mixed convection in a square duct.

Fig. 5. Comparison between h predicted by CAPA and nu-

merical solutions for mixed convection in a square duct.

Fig. 6. Comparison between f � Re=�f � Re�o predicted by

CAPA and numerical solutions for mixed convection in a

square duct.

Fig. 7. Comparison between Nu=�Nu�o predicted by CAPA and

numerical solutions for mixed convection in a square duct.
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characteristic quantities than to solve the original system

of partial di�erential equations.

In the present study, the CAPA technique has been

implemented to yield simple correlations for the laminar

fully developed mixed convection in horizontal square

and circular ducts for Prandtl numbers from 0 to 500

and ReRa� 0±1� 105. The range of Prandtl numbers

includes the liquid metal of small Pr, gases, water, and

engine oils of large Pr. By the CAPA technique, the

ratio of cross-sectional (peripheral) averages of friction

factor, f � Re=�f � Re�o � 1� A4w, and the ratio of

Nusselt number, Nu=�Nu�o � 1� A6Prw, are obtained.

These two simple correlation equations have not been

reported in the literature yet. The maximum deviation

between the correlations and the numerical data is no

more than a few percent for Pr � 0 to 500 and ReRa �
0±1� 105.

For limiting cases of Pr! 0 and Pr!1, the ratios

of friction factor and Nusselt number can be written

explicitly in terms of ReRa or PrReRa in Eqs. (27), (31)

and (32). These equations provide an e�cient evalua-

tion of the ¯ow and heat transfer results ReRa or

PrReRa. Finally, we have complete correlations for

¯ow and heat transfer characteristics of mixed con-

vection in the presence of secondary ¯ow, which are

not possible to obtain by use of conventional scaling

analysis.

With proper considerations, the CAPA technique

could be extended to the thermal ¯ow in rectangular

channels of aspect ratio other than unity. However, it

should be noted that the present version of CAPA still

has some restrictions. It is not appropriate for the ¯ows

involving pure three-dimensionality, unsteadiness or

turbulence at very high Re and/or very high Ra. To

implement the CAPA technique for analysis of the

above-mentioned complex ¯ows is a challenge but

worthwhile work.
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